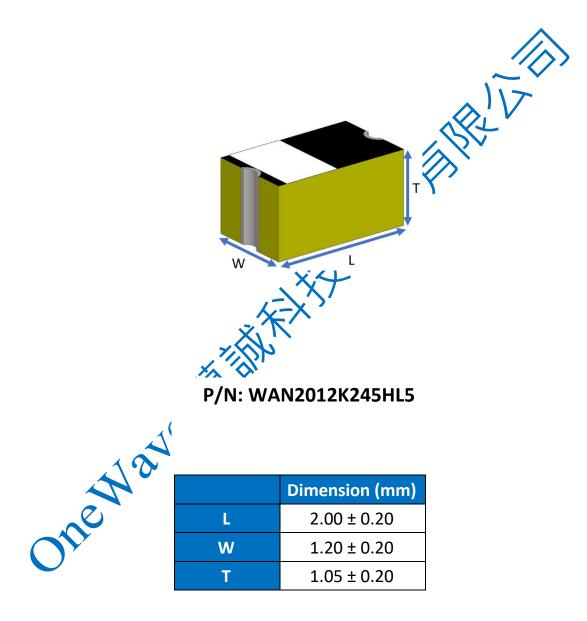

承認書 SPECIFICATION FOR APPROVAL

萬誠科技股份有限公司

112 台北市北投區立功街 151 號 1 樓

電話: (02) 2898-2220 傳真: (02) 2898-5055

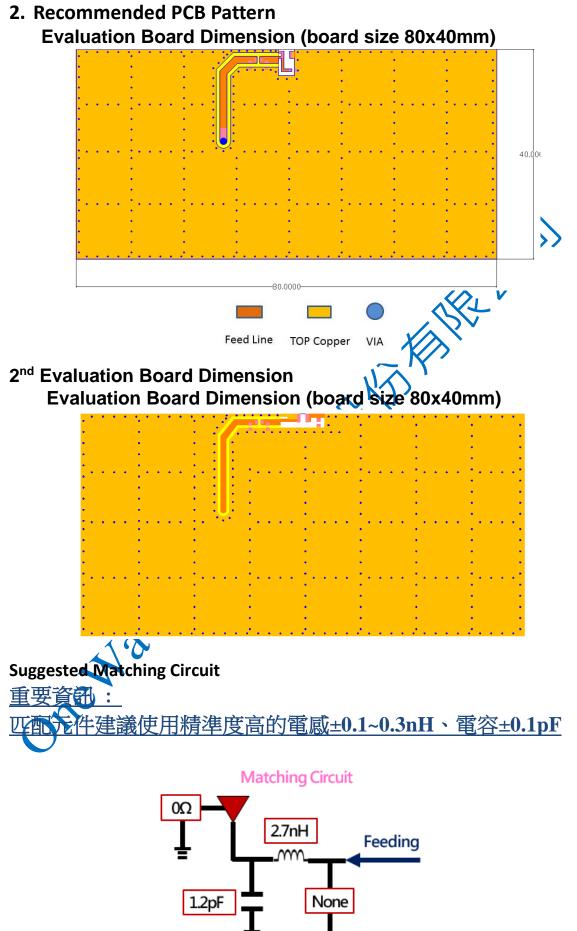

OneWave Electronic Co., Ltd.

1F, No. 151, Li Gong Street, Beitou District, Taipei City 112, Taiwan TEL: +886 2 2898-2220 FAX: +886 2 2898-5055

2012 Chip antenna

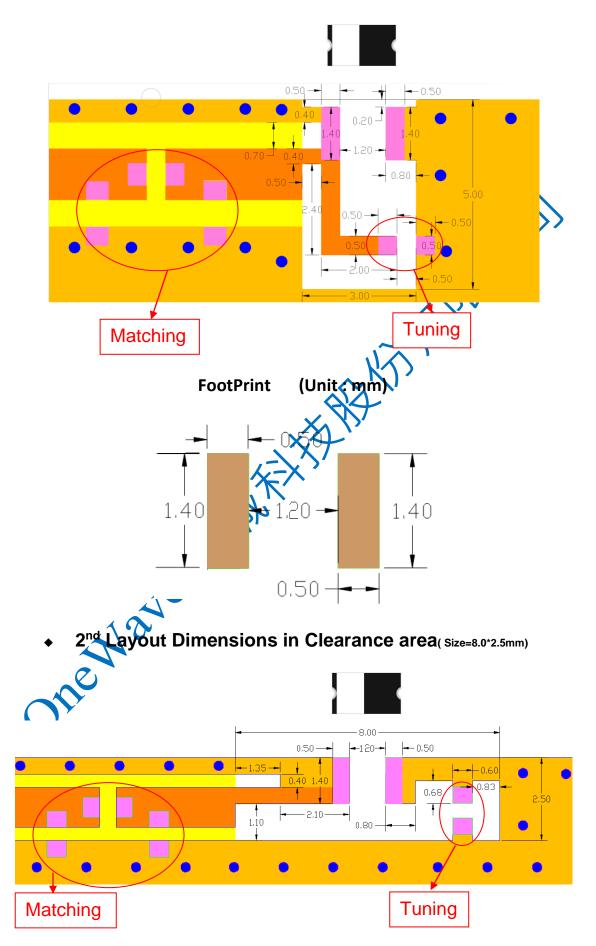
For Bluetooth / WLAN Applications

Part Number Information

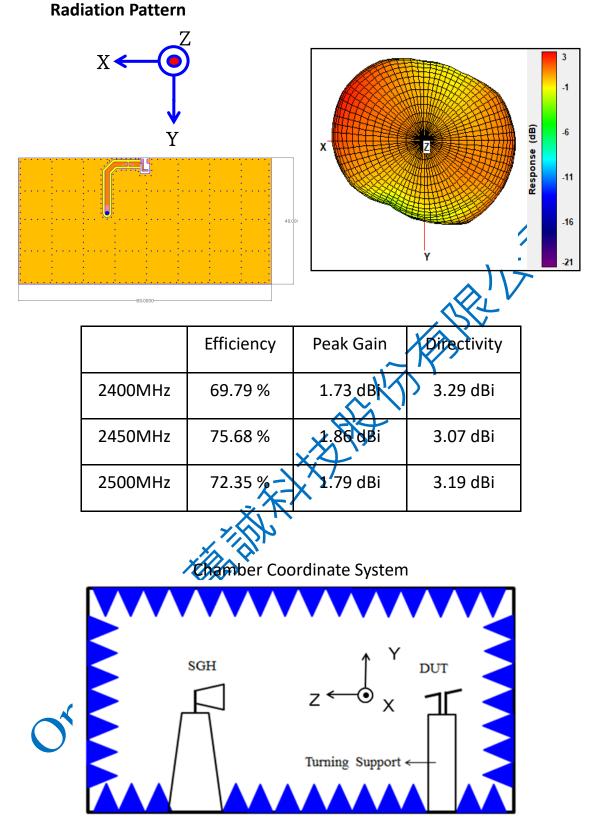

<u>WAN</u>	<u>2012</u>	<u>K</u>	<u>245</u>	H	<u>L5</u>
Α	В	С	D	Е	F

Α	Product Series	Antenna		
В	Dimension L x W	2.00X1.20mm (± 0.2mm)		
С	Material	High K material		
D	Working Frequency	2.4 ~ 2.5GHz		
Е	Feeding mode	PIFA & Single Feeding		
F	Antenna type	Type = L5 🔨 🔪		
ectrical Specification				

1. Electrical Specification


Specification			
Part Number	WAN2012K245HL5		
Central Frequency	2450	MHz	
Bandwidth	85 (Min.)	MHz	
Return Loss	-6.5 (Max)	dB	
Peak Gain	1.86	dBi	
Impedance	50	Ohm	
Operating Temperature	-40~+110	°C	
Maximum Power	4	W	
Resistance to Soldering Heats	10 (@ 260 ℃)	sec.	
Polarization	Linear		
Azimuth Beamwidth	Omni-directional		
Termination	Cu / Sn (Leadless)		

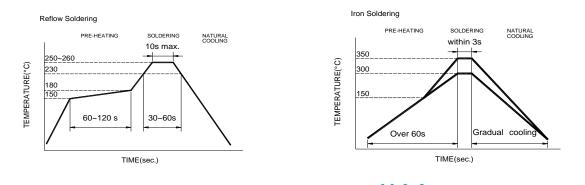
Remark : Bandwidth & Peak Gain was measured under evaluation board of next page


Layout Dimensions in Clearance area(Size=3.0*5.0mm)

3. Measurement Results

Trl Return Loss 10.0 dB/ 0.0 dB [F1] 50.01 2400.0000 MHz -10.068 dB 2 2450.0000 MHz -24.062 dB 3 2483.0000 MHz -11.479 dB 40.04 2441.8750 MHz -34.943 dB Dat 30.0-20.0 10.0 0.0-1 1 -10.0--20.0--30.0-M -40.0--50.0 1500 2500 2000 3000 3500 1601 10 kHz Start 1 GHz High Stop 4 GHz Cor onewave

Return Loss


4. Reliability and Test Condictions

ITEM	REQUIREMENTS	TEST CONDITION
Solderability	1. Wetting shall exceed 90% coverage 2. No visible mechanical damage TEMP (°C) 230°C 4±1 sec. 150°C	Pre-heating temperature:150°C/60sec. Solder temperature:230±5°C Duration:4±1sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin
Solder heat Resistance	60 sec 1. No visible mechanical damage 2. Central Freq. change :within ± 6% TEMP (°C) 260°C 150°C 150°C 60 \text{sec}	Pre-heating temperature:150°C/60sec. Solder temperature:260±5°C Duration:10±0.5sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin
Component Adhesion (Push test)	1. No visible mechanical damage	The device should be reflow soldered(230±5°C for 10sec.) to a tinned copper substrate A dynameter force gauge should be applied the side of the component. The device must with ST-F 0.5 Kg without failure of the termination attached to component.
Component Adhesion (Pull test)	1. No visible mechanical damage	Insert 10cm wire into the remaining open eye bend ,the ends of even wire lengths upward and wind together.
Thermal shock	1. No visible mechanical damage2. Central Freq. change :within $\pm 6\%$ Phase Temperature(°C) Time(min)1 $\pm 110\pm5^{\circ}C$ 2Room2Room3 $-40\pm2^{\circ}C$ 3 $-40\pm2^{\circ}C$ 4RoomTemperature3sec	Terminal shall not be remarkably damaged. +110°C =>30±3min -40°C =>30±3min Test cycle:10 cycles The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Resistance to High Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature: +110±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Resistance to Low Temperature	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature:-40±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.
Humidity	 No visible mechanical damage Central Freq. change :within ±6% No disconnection or short circuit. 	Temperature: 40±2°C Humidity: 90% to 95% RH Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.

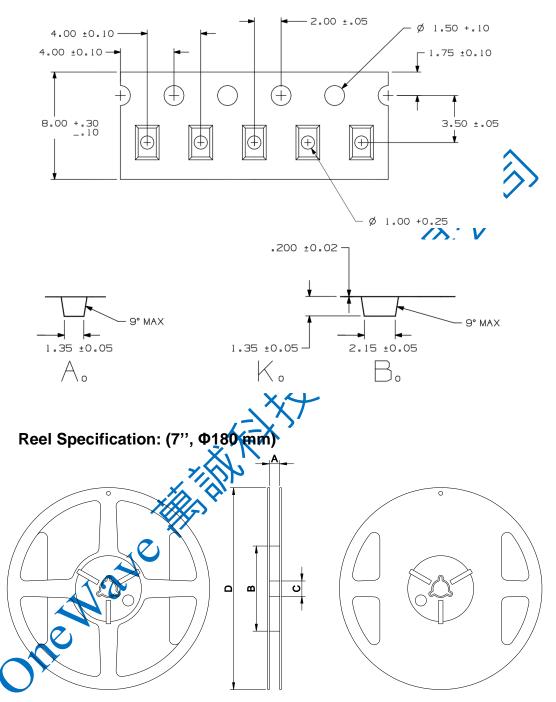
<mark>onew</mark>ave

5.Soldering and Mounting

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Recommended temperature profiles for re-flow soldering in Figure 1.

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended.


- Preheat circuit and products to $150^\circ C$
- Never contact the ceramic with the iron tip
- Use a 20 watt soldering iron with tip diameter of 1.0mm
- 280°C tip temperature (max)

• 1.0mm tip diameter (max)

• Limit soldering time to 3 sec.

6.Packaging Information

Tape Specification:

7" x 8 mm

Tape Width(mm)	A(mm)	B(mm)	C(mm)	D(mm)	Chip/Reel(pcs)
8	9.0±0.5	60±2	13.5±0.5	178±2	3000

7. Storage and Transportation Information

Storage Conditions

To maintain the solderability of terminal electrodes:

- 1. Temperature and humidity conditions: -10~ 40° C and 30~70% RH.
- 2. Recommended products should be used within 6 months from the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.

Transportation Conditions

menave

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized.